THE EFFECTS OF PROSTAGLANDINS AND INDOMETHACIN ON OVULATION IN THE PERFUSED FOWL OVARY

K. Tanaka¹, T. Higuchi, M. Tawarazumita and F. Hertelendy²

Faculty of Agriculture, Kyushu University, Fukuoka 812, Japan

Summary

The effects of prostaglandins (PG) and indomethacin, a PG synthesis inhibitor, on ovulation in the perfused fowl ovary were studied. Laying hens were killed by cutting the jugular vein 18-19 h before expected ovulation of the second follicle of a clutch sequence. The cannulated ovary was dissected free and connected with a recycling perfusion apparatus. Agents to be studied for their effects on ovulation were added to the perfusion fluid. PGF₂α at 0.1 and 1 mg/l induced ovulation, with a success rate of 25% and 30%, respectively. The same doses of PGE₂ were effective at 60% and 63%, respectively. Indomethacin partially blocked gonadotrophin-induced ovulation. It is suggested that PGs may play a supportive role in the process of follicular rupture in the domestic fowl.

(Key Words: Fowl Ovary, Perfusion, Prostaglandin, Indomethacin)

Introduction

Prostaglandins (PG) are involved in the ovulatory process of several mammalian species (Goldberg and Ramwell, 1975), but such action has not been documented in the domestic fowl, since massive doses of indomethacin failed to inhibit spontaneous ovulation (Day and Nalbandov, 1977). Similarly, local application of PGE₂ and PGF₂α to ovarian follicles, either in vivo or in vitro, did not induce ovulation (Samsonovitch and Lague, 1977). However, Hertelendy et al. (1984) and Saito et al. (1987) suggested that the high concentrations of PGs in ovarian follicles may play a part in regulating follicular rupture in the domestic fowl.

Recently a system has been developed for the in vitro perfusion of the fowl ovary (Tanaka et al., 1987). This system is considered to be useful for studying the sequence of events leading to follicular rupture, since it permits isolation of the ovary from systemic influences, and continual observation of the ovary during perfusion. The present studies were designed to test the effectiveness of PGs and indomethacin on ovulation in the perfused fowl ovary.

Materials and Methods

Birds from a commercial hybrid egg-laying stock were used. They were maintained in individual laying cages and were exposed to a 14 h photoperiod. All hens selected for study were laying in clutches of more than three eggs with a pause of only a single day between clutches. Hens were injected intravenously with heparin sulphate (100 U/ hen) 18-19 h before expected ovulation of the second follicle of a clutch sequence, and killed by cutting the jugular vein. After exposure of the ovary, a cannula was inserted into the dorsal aorta. The cannulated ovary was dissected free and connected with a recycling perfusion apparatus. The detailed technique and perfusion system have been described previously (Tanaka et al., 1987).

PGF₂α (5 mg) or PGE₂ (5 mg) was dissolved in 95%, ethanol (0.5 ml), followed by mixing with 0.9% NaCl (4.5 ml). Two concentrations of these PGs, 0.1 and 1.0 mg/l, were evaluated by adding to the perfusion fluid.

To study the effect of indomethacin on gonadotrophin-induced ovulation, 20 or 40 mg of indomethacin, dissolved in 1 ml of 95% ethanol followed by mixing with 1 ml of 7% NaHCO₃, were added to 1 litre of perfusion fluid. Ovine
LH (NIAMDD-OLH-22, 2.3 U/mg) plus FSH (NIAMDD-oFSH-13, 1.5 U/mg). One U each, dissolved in 2 ml of 0.9% NaCl were added 30 min after perfusion of the ovary with indomethacin. Two solutions, 0.1 ml of 95% ethanol plus 0.9 ml of 0.9% NaCl, and 1 ml of 95% ethanol plus 1 ml of 7% NaHCO₃, served as control for PG groups and indomethacin groups, respectively. Routinely, two separate perfusion systems, containing 500 ml perfusion fluid/ovary, were operated simultaneously. Significance levels for the percentage of the largest follicles ovulating were determined by χ² test.

Results

Both doses of 0.1 and 1.0 mg PGF₂α were effective in inducing ovulation of the largest follicles, in 2 out of 8 (25%) and 3 out of 10 (30%) perfusion experiments, respectively. PGE₂ applied also at 0.1 and 1.0 mg/l caused ovulation in 60% and 63% of F₁ follicles, respectively, but the difference between PGF₂α and PGE₂ groups was not statistically significant. By comparison, the efficacy of gonadotrophins was significantly (p < 0.05) greater (table 1). Controls failed to ovulate.

No apparent suppression of gonadotrophic-induced ovulation was observed using 20 mg/l of indomethacin, whereas 40 mg significantly reduced the rate of ovulation (p < 0.05).

The interval between the onset of perfusion and ovulation was about 4-5 h. In general, the follicles which failed to ovulate became atretic by 8 h after the start of perfusion. Once initiated, atresia rapidly spread to the entire surface of the follicle, usually within 1 h.

Discussion

The fact that either PGF₂α or PGE₂ was partially effective for the induction of ovulation in the perfused fowl ovary suggests some involvement of PGs in follicular rupture. Our initial concept was that PGs may exert their action quickly, if at all, through the stimulation of ovarian contractility, since concentrations of plasma and follicular PGs have been observed to rise around the time of ovulation (Olson et al., 1986; Saito et al., 1987). However, about 4-5 h were required until actual follicular rupture occurred following the onset of ovarian perfusion with PGF₂α or PGE₂. This might be associated with the second peak of plasma PGs occurring 5-7 h before ovulation (Hammond et al., 1980).

It is also likely that PGs act directly on the preovulatory follicle by both affecting its blood supply (Sances et al., 1982), which may result in so called 'physiological atresia' (Nalbandov, 1961), and by stimulating the contraction of follicular smooth muscle to facilitate rupture of

Table 1. Effects of Prostaglandins and Indomethacin on Ovulation in the Perfused Fowl Ovary

<table>
<thead>
<tr>
<th>Agent (per liter)</th>
<th>No. of ovaries</th>
<th>No. of follicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGF₂α (0.1 mg)</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>PGF₂α (1.0 mg)</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>PGE₂ (0.1 mg)</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>PGE₂ (1.0 mg)</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Vehicle control</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Indomethacin (20 mg) + LH(1U) + FSH(1U)	14	10
Indomethacin (40 mg) + LH(1U) + FSH(1U)	12	4
LH(1U) + FSH(1U) + vehicle	8	7
Vehicle control	9	0

1 Ovaries were isolated 18-19 h before the expected ovulation of C2 follicles of a clutch sequence.

2 Ethanol (95%, 0.1 ml) + NaCl (0.9%, 0.9 ml).

3 Ethanol (95%, 0.7 ml) + NaHCO₃ (7%, 1 ml).

Values with different superscripts are significantly different, p < 0.05.
the stigma. In mammals, PGs activate ovarian adenylate cyclase to enhance steroidogenesis (Marsh and LeMaire, 1974), and LH promotes prostaglandin synthesis (Clark et al., 1978), leading to ovulation. In addition, indomethacin or anti-prostaglandin serum can block LH-induced ovulation (Zor and Lamprecht, 1977; Armstrong et al., 1974). However, no such inhibitory action of indomethacin on ovulation (Day and Nalbandov, 1977; Hertelendy and Biellier, 1978; Hammond and Ringer, 1978; Olson and Hertelendy, 1981) and on gonadotrophin-induced steroidogenesis (Hertelendy and Hammond, 1980) has been observed in the fowl.

In the present study, however, indomethacin partially blocked gonadotrophin-induced ovulation. From these results it seems more likely that PGs play a permissive or complementary role in the complex physiological mechanism(s) of ovulation. This hypothesis does not contradict earlier works concerning the role of PGs in the avian ovulatory process, since it is considered that under the in vitro perfusion system hormones or drugs act directly on the ovary, whereas in vivo studies are complicated by uncontrolled variables, including endocrine, neural, humoral, vascular and metabolic factors. In addition, it is assumed that the ovulatory event in the fowl may not be achieved by a sole mechanism, since in mammals PGs are involved in a variety of metabolic processes, which are essential to reproductive function, through pathways that are separate from the action of gonadotrophins (Marsh, 1975; Zor and Lamprecht, 1977). Further efforts are necessary to elucidate the possible role and mode of action of prostaglandins in ovulation in the domestic fowl.

Acknowledgements

We thank NIAMDD, Baltimore, Maryland, for the generous gift of the ovine LH and FSH used in these experiments. This study was supported by a Grant-in-Aid from the Ministry of Education, Science and Culture (63516265).

Literature Cited

Saito, N., K. Sato and K. Shimada. 1987. Prostaglandin levels in peripheral and follicular plasma, the isolated theca and granulosa layers of pre- and postovulatory follicles, and the myometrium and mucosa of the shell gland (uterus) during a mid-
sequence-oviposition of the hen (*Gallus domesticus*).

Scanes, G. G., H. Mozelle, E. Kavanagh, G. Merrill
and J. Rabii. 1982. Distribution of blood flow
in the ovary of domestic fowl (*Gallus domesticus*)
and changes after prostaglandin F-2α treatment.
J. Reprod. Fert. 54:227-231.

Tanaka, K., Z. D. Li and Y. Ataka. 1987. Studies of
ovulation in the perfused ovary of the fowl (*Gallus

Zor, U. and S. Lamprecht. 1977. Biochemical Actions