Go to Top Go to Bottom
Animal Breeding and Genetics
Asian-Australasian Journal of Animal Sciences 2005;18(3): 433-438.
DOI: https://doi.org/10.5713/ajas.2005.433    Published online April 20, 2005.
Production of Functional Whey Protein Concentrate by Monitoring the Process of Ultrafilteration
H. M. Jayaprakasha, Y. C. Yoon
Abstract
This investigation was undertaken in order to elicit the relationship between the extent of ultrafiltration processing of whey and its effect on composition and yield of resultant whey protein concentrate (WPC). Cheddar cheese whey was fractionated through ultrafiltration to an extent of 70, 80, 90, 95, 97.5% and 97.5% volume reduction followed by I stage and II stage diafiltration. After each level of ultrafiltration, the composition of WPC was monitored. Similarly, the initial whey was adjusted to 3.0, 6.2 and 7.0 pH levels and ultrafiltration was carried out to elicit the effect of pH of ultrafiltration on the composition. Further, initial whey was adjusted to different levels of whey protein content ranging from 0.5 to 1.0 per cent and subjected to ultrafiltration to different levels. The various range of retentate obtained were further condensed and spray dried in order to assess the yield of WPC per unit volume of whey used and the quantity of whey required to produce unit weight of product. With the progress of ultrafiltration, there was a progressive increase in protein content and decrease in lactose and ash content. The regression study led to good relationships with R2 values of more than 0.95 between the extents of permeate removed and the resultant changes in composition of each of the constituents. Whey processed at pH 3.0 had significantly a very low ash content and high protein content as compared to processing at 6.2 and 7.0. The yield of WPC per unit volume of whey varied significantly with the initial protein content. Higher initial protein content led to higher yield of all ranges of WPC and the quantity of whey required per unit weight of spray dried WPC significantly reduced. Regression equations establishing the relationship between initial protein content of whey and the yield of various types of WPC have been derived with very high R2 values of 0.99. This study revealed that, the yield and composition of whey can be monitored strictly by controlling the processing parameters and WPC can be produced depending on the food formulation requirement.
Keywords: Whey; Ultrafiltration; Diafiltration; Processing Parameters; Whey Protein Concentrate; Yield and Composition


Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : jongkha@hotmail.com               

Copyright © 2020 by Asian-Australasian Journal of Animal Sciences. All rights reserved.

Close layer
prev next