Go to Top Go to Bottom
Animal Breeding and Genetics
Asian-Australasian Journal of Animal Sciences 2005;18(1): 42-47.
https://doi.org/10.5713/ajas.2005.42    Published online April 19, 2005.
Can Moringa oleifera Be Used as a Protein Supplement for Ruminants?
A. M. V. Kakengi, M. N. Shem, S. V. Sarwatt, T. Fujihara
Abstract
The possibility of using Moringa oleifera as a ruminant protein supplement was investigated by comparison between nutritive and anti-nutritive value of its different morphological parts with that of conventionally used Leucaena leucocephala leaf meal (LL). Parameters determined were chemical composition, rumen degradable protein (RDP), acid detergent insoluble protein (ADIP), pepsin soluble protein (PESP), non-protein nitrogen (NPN) total soluble protein (TSP) and protein potentially digested in the intestine (PDI). Total phenols (TP) and total extractable tannins (TET) were also evaluated as anti-nutritive factors. In vitro gas production characteristics were measured and organic matter digestibility (OMD) was estimated basing on 24 h-gas production. Crude protein content ranged from 265-308 g/kg DM in M. oleifera leaves (MOL) and seed cake (MOC) respectively. Leucaena leucocephala and Moringa oleifera soft twigs and leaves (MOLSTL) had CP content of 236 and 195 g/kg DM while Moringa oleifera soft twigs alone (MOST) and Moringa oleifera bucks (MOB) had 160, 114 and 69.3 g/kg DM respectively. RDP was highest in (MOC) (181 g/kg DM) followed by (MOL) (177 g/kg DM) and was lowest in MOB (40 g/kg DM). The proportion of the protein that was not available to the animal (ADIP) was (p<0.05) higher in MOL and MOC (72 and 73 g/kg DM) respectively and lowest in LL (29 g/kg DM). The PDI was high in LL (74 g/kg DM) followed by MOC (55 g/kg DM) then MOL (16 g/kg DM). PESP was highest (p<0.05) in MOC followed by MOL then LL (273, 200 and 163 g/kg DM respectively). MOC exhibited highest NPN content (116 g/kg DM) and was lowest in MOB (18 g/kg DM) (p<0.05). Highly (p<0.05) TSP was observed in MOC and MOL (308 and 265 g/kg DM respectively) followed by LL (236 g/kg DM). MOL had negligible TET (20 g/kg DM) when compared with about 70 g/kg DM in LL. Highly (p<0.05) b and a+b values were observed for MOLSTL (602 and 691 g/kg DM respectively) followed by MOL (490 and 538 g/kg DM). Highest c value was observed in MOSTL followed by MOC and MOL (0.064, 0.056 and 0.053 rate/hour) respectively. OMD was highest (p<0.05) for MOSTL followed by MOC and then MOL (579, 579 and 562 g/kg DM respectively). LL exhibited lower (p<0.05) OMD (467 g/kg DM). It was concluded from this study that the high crude protein content in MOL and MOLST could be well utilized by ruminant animals and increase animal performance however, high proportion of unavailable protein to the lower gut of animals and high rumen degradable protein due to negligible tannin content render it a relatively poor protein supplement for ruminants. MOC can be a best alternative protein supplement to leaves and leaves and soft twigs for ruminants.
Keywords: Moringa oeifera; Leucaena leucocephala; Protein Supplement; Ruminants


Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : editor@animbiosci.org               

Copyright © 2024 by Asian-Australasian Association of Animal Production Societies.

Developed in M2PI

Close layer
prev next