Go to Top Go to Bottom
Animal Breeding and Genetics
Asian-Australasian Journal of Animal Sciences 2003;16(7): 952-961.
DOI: https://doi.org/10.5713/ajas.2003.952    Published online January 1, 2003.
Effects of Tropical Climate on Reproduction of Cross- and Purebred Friesian Cattle in Northern Thailand
P. Pongpiachan, P. Rodtian, K. Ōta
In the first part of the study, rates of estrus occurrence and success of A.I. service in the Thai-native and Friesian crossbred, and purebred Friesian cows fed in the National Dairy Training and Applied Research Institute in Chiang Mai, Thailand were traced monthly throughout a year. An electric fan and a water sprinkler cooled the stall for the purebred cows during the hot season (March-September). Both rates in pure Friesians were at their highest in the cold-dry season (October- February), but they decreased steadily during the hot-dry season (March-May) and were at their lowest in the hot-wet season (June-September). Seasonal change of a similar pattern was observed in the incidence of estrus, but not in the success rate of insemination in the crossbred cows. By the use of reproductive data, compiled in the same institute, on the 75 % cross- and purebred Friesian cows, and climatological data in Chiang Mai district, effects of ambient temperature and humidity on the reproductive traits of cows were examined by regression analysis in the second half of the study. Significant relationships in the crossbred, expressed by positive-linear and parabola regressions, were found between reproductive parameters such as days to the first estrus (DTFE), A.I. service (DTFAI), and conception, the number of A.I. services required for conception and some climatic factors. However, regarding this, no consistent or intelligible results were obtained in purebred cows, perhaps because electric fans and water sprinklers were used for this breed in the hot season. Among climatic factors examined, the minimum temperature (MINT) in early lactation affected reproductive activity most conspicuously. As the temperature during one or two months prior to the first estrus and A.I. service rose, DTFE and DTFAI steadily became longer, although, when MINT depleted below 17-18째C, the reproductive interval tended to be prolonged again on some occasions. The maximum temperature also affected DTFE and DTFAI, but only in limited conditions. The effect of humidity was not clear, although the inverse relationship between DTFE and minimum humidity during 2 months before the first estrus in the crossbred seemed to be significant. Failure to detect any definite effect of climate on the reproductive traits of pure Friesians seemed to indicate that forced ventilation by electric fans and water sprinklers were effective enough to protect the reproductive ability of this breed from the adverse effects of a hot climate.
Keywords: Reproduction; Crossbred; Friesian; Cow; Heat Stress; Thailand

Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : jongkha@hotmail.com               

Copyright © 2020 by Asian-Australasian Journal of Animal Sciences. All rights reserved.

Close layer
prev next