Go to Top Go to Bottom
Animal Breeding and Genetics
Asian-Australasian Journal of Animal Sciences 2001;14(7): 910-914.
DOI: https://doi.org/10.5713/ajas.2001.910    Published online July 1, 2001.
Genetic Parameter Estimation with Normal and Poisson Error Mixed Models for Teat Number of Swine
C. Lee, C. D. Wang
Abstract
The teat number of a sow plays an important role for weaning pigs and has been utilized in selection of swine breeding stock. Various linear models have been employed for genetic analyses of teat number although the teat number can be considered as a count trait. Theoretically, Poisson error mixed models are more appropriate for count traits than Normal error mixed models. In this study, the two models were compared by analyzing data simulated with Poisson error. Considering the mean square errors and correlation coefficients between observed and fitted values, the Poisson generalized linear mixed model (PGLMM) fit the data better than the Normal error mixed model. Also these two models were applied to analyzing teat numbers in four breeds of swine (Landrace, Yorkshire, crossbred of Landrace and Yorkshire, crossbred of Landrace, Yorkshire, and Chinese indigenous Min pig) collected in China. However, when analyzed with the field data, the Normal error mixed model, on the contrary, fit better for all the breeds than the PGLMM. The results from both simulated and field data indicate that teat numbers of swine might not have variance equal to mean and thus not have a Poisson distribution.
Keywords: Hierarchical Likelihood; Nonlinear Model; Variance Components
TOOLS
METRICS Graph View
  • 2 Crossref
  • 2 Scopus
  • 1,838 View
  • 16 Download
Related articles


Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : jongkha@hotmail.com               

Copyright © 2020 by Asian-Australasian Journal of Animal Sciences. All rights reserved.

Close layer
prev next