Table S1. The effect of different factors on reproductive performance traits

Traits	Herd		Year		Season		Parity	
	Df	$\mathrm{F}^{1)}$	Df	F	Df	F	Df	F
TNB	1	$16.84^{* *}$	9	$33.97^{* *}$	3	3.73^{*}	7	$49.02^{* *}$
NBA	1	0.07	9	$22.06^{* *}$	3	2.27	7	$43.98^{* *}$
LBW	1	$94.34^{* *}$	9	$29.26^{* *}$	3	3.21^{*}	7	$129.59^{* *}$
ABW	1	$558.97^{* *}$	9	$53.12^{* *}$	3	$15.02^{* *}$	7	$114.36^{* *}$
GL	1	$121.23^{* *}$	9	$74.29^{* *}$	3	1.15	7	$31.24^{* *}$
AFS	1	$30.15^{* *}$	9	$21.29^{* *}$	3	$21.39^{* *}$		
AFF	1	$34.66^{* *}$	9	$21.14^{* *}$	3	$22.32^{* *}$		

TNB, total number born; NBA, number born alive; LBW, litter birth weight; ABW, average birth weight; GL, gestation length; AFS, age at first service; AFF, age at first farrowing; Df, degree of freedom.
${ }^{1)}$ The effects of herds, years, seasons, and parities on reproductive traits. ${ }^{*} p<0.05,{ }^{* *} p<0.01$.

Table S2. The effect of herds on reproductive performance traits

Herd	TNB (each $)^{1)}$	NBA (each)	LBW (kg)	ABW (kg)	GL (day)
$10.31 \pm 2.96^{2)}$	9.98 ± 2.94	14.61 ± 4.24	1.48 ± 0.23	114.95 ± 1.74	
	$(8250,43.69 \%)^{\mathrm{a}}$	$(8181,43.72 \%)^{3)}$	$(7669,43.86 \%)^{\mathrm{a} 4)}$	$(7669,43.86 \%)^{\mathrm{a}}$	$(8290,43.67 \%)^{\mathrm{a}}$
	10.56 ± 2.80	10.11 ± 2.62	14.13 ± 3.75	1.40 ± 0.19	115.21 ± 1.86
2	$(10633,56.31 \%)^{\mathrm{b}}$	$(1053,56.28 \%)$	$(9815,56.14 \%)^{\mathrm{b}}$	$(9815,56.14 \%)^{\mathrm{b}}$	$(10692,56.33 \%)^{\mathrm{b}}$

$\overline{\text { TNB, total number born; NBA, number born alive; LBW, litter birth weight; ABW, average birth weight; GL, gestation length; AFS, age at first service; AFF, age at first }}$ farrowing.
${ }^{1)}$ The unit of traits are shown in parentheses.
${ }^{2)}$ Phenotypic data of different herds are displayed by mean \pm standard deviation;
${ }^{3)}$ The number of individuals and frequencies in different herds are shown in parentheses, respectively;
${ }^{4}$) Different superscript letters (a, b) in the same column mean significant differences $(P<0.05)$.

Table S3. The effect of years on reproductive performance traits

Year	TNB (each) ${ }^{1)}$	NBA (each)	LBW (kg)	ABW (kg)	GL (day)	AFS (day)	AFF (day)
	$10.44 \pm 3.19^{2)}$	9.97 ± 3.08	14.52 ± 4.82	1.46 ± 0.24	115.33 ± 1.91	285.53 ± 51	400.94 ± 51.13
	$(2133,11.30 \%)^{\text {a }}$	$(2119,11.32 \%)^{3) \mathrm{a}}$	$(1926,11.02 \%)^{\text {ab4 }}$	$(1926,11.02 \%)^{\text {a }}$	$(2119,11.16 \%)^{\text {abc }}$	$(791,18.13 \%)^{\text {acd }}$	$(791,18.13 \%)^{\text {acd }}$
	10.19 ± 2.89	9.85 ± 2.84	14.82 ± 4.29	1.51 ± 0.18	115.03 ± 1.78	292.61 ± 54.47	407.62 ± 54.6
2008	$(1494,7.91 \%)^{\text {b }}$	$(1485,7.94 \%)^{\text {ab }}$	$(1395,7.98 \%)^{\text {c }}$	$(1395,7.98 \%)^{\text {b }}$	$(1504,7.92 \%)^{\text {d }}$	$(319,7.31 \%)^{\text {a }}$	$(319,7.31 \%)^{\text {a }}$
	10.33 ± 3.00	9.93 ± 2.9	14.37 ± 4.05	1.47 ± 0.24	115.26 ± 1.72	301.51 ± 57.05	416.63 ± 57.4
2009	$(1723,9.12 \%)^{\mathrm{ab}}$	$(1705,9.11 \%)^{\text {ab }}$	$(1609,9.20 \%)^{\text {abd }}$	$(1609,9.20 \%)^{\text {ac }}$	(1741, 9.17\%) ${ }^{\text {ab }}$	$(235,5.39 \%)^{\text {b }}$	$(235,5.39 \%)^{\text {b }}$
	10.35 ± 2.95	10.02 ± 2.9	14.16 ± 4.05	1.42 ± 0.24	115.09 ± 1.86	291.85 ± 52.46	407.28 ± 52.55
2010	$(1839,9.74 \%)^{\text {ab }}$	$(1823,9.74 \%)^{\text {a }}$	$(1676,9.59 \%)^{\text {d }}$	$(1676,9.59 \%)^{\text {d }}$	$(1853,9.76 \%)^{\text {d }}$	(323, 7.40\%) ${ }^{\text {a }}$	(323, 7.40\%) ${ }^{\text {a }}$
	10.08 ± 3.01	9.77 ± 3	13.89 ± 4.15	1.44 ± 0.24	115.42 ± 1.78	279.08 ± 51.63	394.53 ± 51.74
2011	$(1552,8.22 \%)^{\text {b }}$	$(1541,8.23 \%)^{\text {b }}$	$(1421,8.13 \%)^{\text {e }}$	$(1421,8.13 \%)^{\text {e }}$	$(1564,8.24 \%)^{\text {c }}$	$(347,7.96 \%)^{\text {d }}$	$(347,7.96 \%)^{\text {d }}$
	9.82 ± 2.88	9.5 ± 2.85	13.37 ± 3.92	1.42 ± 0.2	115.34 ± 1.67	289.12 ± 56.46	404.77 ± 56.66
2012	$(1892,10.02 \%)^{\text {c }}$	$(1874,10.01 \%)^{\text {c }}$	$(1732,9.91 \%)^{\text {f }}$	$(1732,9.91 \%)^{\text {d }}$	$(1911,10.07 \%)^{\text {abc }}$	$(451,10.34 \%)^{\text {ac }}$	$(451,10.34 \%)^{\text {ac }}$
	10.32 ± 2.83	10.03 ± 2.78	14.18 ± 3.89	1.42 ± 0.2	115.37 ± 1.89	269.21 ± 45.97	385.29 ± 45.95
2013	$(1994,10.56 \%)^{\text {ab }}$	$(1960,10.47 \%)^{\text {a }}$	$(1888,10.80 \%)^{\text {d }}$	$(1888,10.80 \%)^{\text {d }}$	$(2007,10.57 \%)^{\text {bc }}$	$(496,11.37 \%)^{\text {e }}$	$(496,11.37 \%)^{\text {e }}$

2014	10.68 ± 2.43	10.3 ± 2.3	14.26 ± 3.35	1.39 ± 0.16	115.22 ± 1.72	282.37 ± 50.77	398.14 ± 50.89
	$(2472,13.09 \%)^{\text {d }}$	$(2447,13.08 \%)^{\text {d }}$	$(2374,13.58 \%)^{\text {ad }}$	$(2374,13.58 \%)^{\text {f }}$	$(2481,13.07 \%)^{\text {a }}$	$(707,16.21 \%)^{\text {cd }}$	$(707,16.21 \%)^{\text {cd }}$
2015	11.20 ± 2.73	10.58 ± 2.53	14.59 ± 3.4	1.39 ± 0.17	114.51 ± 1.74	279.05 ± 40.93	394.01 ± 41
	$(2136,11.31 \%)^{\text {e }}$	$(2125,11.36 \%)^{e}$	$(2072,11.85 \%)^{\text {bc }}$	$(2072,11.85 \%)^{\text {f }}$	$(2146,11.31 \%)^{e}$	$(341,7.82 \%)^{\text {d }}$	$(341,7.82 \%)^{\text {d }}$
2016	10.94 ± 2.59	10.35 ± 2.4	15.43 ± 3.63	1.47 ± 0.22	114.361 .68	260.9438 .75	375.55 ± 38.89
	$(1648,8.73 \%)^{\text {f }}$	$(1634,8.73 \%)^{\text {d }}$	(1391, 7.96\%) ${ }^{\text {g }}$	$(1391,7.96 \%)^{\text {c }}$	$(1656,8.72 \%)^{\text {f }}$	$(352,8.07 \%)^{\text {f }}$	$(352,8.07 \%)^{\text {f }}$

TNB, total number born; NBA, number born alive; LBW, litter birth weight; ABW, average birth weight; GL, gestation length; AFS, age at first service; AFF, age at first farrowing.
${ }^{1)}$ The unit of traits are shown in parentheses.
${ }^{2)}$ Phenotypic data of different years are displayed by mean \pm standard deviation;
${ }^{3}$) The number of individuals and frequencies in different years are shown in parentheses, respectively;
${ }^{4}$ Different superscript letters ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$) in the same column mean significant differences $(P<0.05)$.

Table S4. The effect of seasons on reproductive performance traits

Season	TNB (each) ${ }^{1)}$	NBA (each)	LBW (kg)	ABW (kg)	GL (day)	AFS (day)	AFF (day)
Spring	10.54 ± 2.84	10.11 ± 2.76	14.43 ± 3.96	1.43 ± 0.21	115.09 ± 1.78	283.67 ± 51.54	399.12 ± 51.76
	$(4684,24.81 \%)^{\text {a2) }}$	(4640, 24.80\%) ${ }^{3}$	(4371, 25.00\%) $)^{\text {a4) }}$	(4371, 25.00\%) ${ }^{\text {a }}$	(4692, 24.72\%)	$(1164,26.69 \%)^{\text {a }}$	$(1164,26.69 \%)^{\text {a }}$
Summer	10.37 ± 2.84	9.97 ± 2.73	14.38 ± 4	1.45 ± 0.21	115.08 ± 1.81	276.4 ± 48.94	391.63 ± 49.05
	$(5250,27.80 \%)^{\mathrm{b}}$	(5208, 27.83\%)	$(4823,27.59 \%)^{\text {ab }}$	$(4823,27.59 \%)^{\text {b }}$	(5269, 27.76\%)	$(1293,29.64 \%)^{\text {b }}$	$(1293,29.64 \%)^{\text {b }}$
Autumn	10.42 ± 2.83	10.03 ± 2.74	14.21 ± 3.94	1.42 ± 0.21	115.14 ± 1.81	280.72 ± 50.03	396.15 ± 50.1
	$(4494,23.80 \%)^{\text {ab }}$	(4444, 23.75\%)	(4135, 23.65\%) ${ }^{\text {b }}$	$(4135,23.65 \%)^{\text {c }}$	(4529, 23.86\%)	$(1028,23.57 \%)^{\text {ab }}$	(1028, 23.57\%,) ${ }^{\text {a }}$
Winter	10.51 ± 2.99	10.1 ± 2.85	14.32 ± 4.02	1.43 ± 0.21	115.081 .85	291.42 ± 53.64	407.12 ± 53.65
	$(4455,23.59 \%)^{\text {a }}$	(4421, 23.63\%)	$(4155,23.76 \%)^{\text {ab }}$	(4155, 23.76\%) ${ }^{\text {a }}$	(4492, 23.66\%)	(877, 20.11\%) ${ }^{\text {c }}$	(877, 20.11\%) ${ }^{\text {c }}$

$\overline{T N B}$, total number born; NBA, number born alive; LBW, litter birth weight; ABW, average birth weight; GL, gestation length; AFS, age at first service; AFF, age at first farrowing.
${ }^{1)}$ The unit of traits are shown in parentheses.
${ }^{2)}$ Phenotypic data of different seasons are displayed by mean \pm standard deviation;
${ }^{3)}$ The number of individuals and frequencies in different seasons are shown in parentheses, respectively;
${ }^{4}$) Different superscript letters ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) in the same column mean significant differences $(P<0.05)$.

Table S5. The effect of parities on reproductive performance traits

Parity	TNB(each) ${ }^{1)}$	NBA(each)	LBW(kg)	ABW (kg)	GL(day)
1	$9.96 \pm 2.67^{2)}$	9.63 ± 2.6	13.06 ± 3.74	1.36 ± 0.2	115.45 ± 1.88
	(4751, 25.16\%) ${ }^{\text {a }}$	$(4661,24.91 \%)^{3) a}$	$(4304,24.62 \%)^{\text {a4) }}$	(4304, 24.62\%) ${ }^{\text {a }}$	(4772, 25.14\%) ${ }^{\text {a }}$
2	10.43 ± 2.9	10.07 ± 2.79	14.68 ± 3.93	1.47 ± 0.21	115.12 ± 1.78
	(3602, 19.08\%) ${ }^{\text {b }}$	$(3580,19.13 \%)^{\text {bc }}$	$(3405,19.47 \%)^{\text {b }}$	$(3405,19.47 \%)^{\text {b }}$	$(3627,19.11 \%)^{\text {b }}$
3	10.83 ± 2.93	10.41 ± 2.82	15.2 ± 3.95	1.47 ± 0.21	114.96 ± 1.75
	$(2909,15.41 \%)^{\text {de }}$	$(2897,15.48 \%)^{\text {d }}$	$(2783,15.92 \%)^{\text {c }}$	$(2783,15.92 \%)^{\text {b }}$	$(2917,15.37 \%)^{\text {c }}$
4	11.01 ± 3.03	10.5 ± 2.86	15.23 ± 4.02	1.46 ± 0.21	114.87 ± 1.72
	$(2292,12.14 \%)^{\text {e }}$	$(2282,12.19 \%)^{\text {d }}$	$(2188,12.51 \%)^{\text {c }}$	$(2188,12.51 \%)^{\text {b }}$	(2301, 12.12\%) ${ }^{\text {c }}$
5	10.85 ± 2.84	10.42 ± 2.74	14.99 ± 3.83	1.45 ± 0.21	114.83 ± 1.85
	(1724, 9.13\%) ${ }^{\text {e }}$	(1712, 9.15\%) ${ }^{\text {d }}$	(1619, 9.26\%) ${ }^{\text {c }}$	(1619, 9.26\%) ${ }^{\text {c }}$	$(1736,9.15 \%)^{\text {c }}$
6	10.64 ± 2.73	10.17 ± 2.62	14.65 ± 3.76	1.44 ± 0.2	114.86 ± 1.75
	$(1303,6.90 \%)^{\text {cd }}$	(1292, 6.90\%) ${ }^{\text {c }}$	$(1157,6.62 \%)^{\text {b }}$	(1157, $6.62 \%)^{\text {c }}$	$(1310,6.90 \%)^{\text {c }}$
7	10.46 ± 2.88	9.98 ± 2.79	14.27 ± 3.89	1.44 ± 0.21	114.93 ± 1.81
	$(932,4.94 \%)^{\text {bc }}$	$(928,4.96 \%)^{\text {b }}$	$(841,4.81 \%)^{\text {d }}$	$(841,4.81 \%)^{\text {c }}$	$(939,4.95 \%)^{\text {c }}$

$\geqslant 8$	9.88 ± 2.9	9.39 ± 2.85	13.18 ± 4	1.42 ± 0.22

$\overline{T N B}$, total number born; NBA, number born alive; LBW, litter birth weight; ABW, average birth weight; GL, gestation length; AFS, age at first service; AFF, age at first farrowing.
${ }^{1)}$ The unit of traits are shown in parentheses.
${ }^{2)}$ Phenotypic data of different parities are displayed by mean \pm standard deviation;
${ }^{3}$ The number of individuals and frequencies in different parities are shown in parentheses, respectively;
${ }^{4}$) Different superscript letters ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$) in the same column mean significant differences ($P<0.05$).

