Appendix A: Elements in matrix $\boldsymbol{\Pi}$ calculated according to [9] and [12].
Note that $\pi_{o, p}=\left[\operatorname{cov}\left(s_{p}, s_{o}\right)-k_{o} \operatorname{cov}\left(\mathrm{~s}_{p}, \hat{A}_{o}\right) \operatorname{cov}\left(s_{o}, \hat{A}_{o}\right) / \sigma_{\hat{A}_{o}}^{2}\right] / \operatorname{Var}\left(s_{p}\right)$,
where subscripts p and o denote parent and offspring, with (co)variances taken before selection of the offspring; k_{o} is the reduction factor of the variance of the offspring due to selection of the offspring; and \hat{A}_{o} is the GEBV of the offspring. For example,
$\pi_{S D, S S}=\left[\operatorname{cov}\left(s_{p, S S}, s_{o, S D}\right)-k_{o, S D} \operatorname{cov}\left(s_{p, S S}, \hat{A}_{o, S D}\right) \operatorname{cov}\left(s_{o, S D}, \hat{A}_{o, S D}\right) / \sigma_{\hat{A}_{o, S D}}^{2}\right] / \sigma_{s_{p, S S}}^{2}$,
$\operatorname{cov}\left(s_{p, S S}, s_{o, S D}\right)=\operatorname{cov}\left(s_{p, S S}, \frac{1}{2}\left(s_{p, S S}+s_{p, D S}\right)\right)=\frac{1}{2} \sigma_{s_{p, S S}}^{2}$, and
$\operatorname{cov}\left(\mathrm{s}_{p, S S}, \hat{A}_{o, S D}\right)=\operatorname{cov}\left(\mathrm{s}_{p, S S}, r_{\hat{A}_{o, S D}}^{2} \mathrm{~A}_{\mathrm{o}, \mathrm{SD}}\right)=\operatorname{cov}\left(\mathrm{s}_{p, S S}, r_{\hat{A}_{o, S D}}^{2} \frac{1}{2}\left(\mathrm{~s}_{p, S S}+\mathrm{s}_{p, D S}\right)\right)=$ $\frac{r_{\hat{A}_{o, S D}}^{2}}{2} \sigma_{s_{p, S S}}^{2}, \operatorname{cov}\left(s_{o, S D}, \hat{A}_{o, S D}\right)=\sigma_{\hat{A}_{o, S D}}^{2}$.

Therefore, $\pi_{S D, S S}=\frac{1}{2}\left(1-k_{o, S D} r_{\tilde{A}_{o, S D}}^{2}\right)$.
In the same way as for $\pi_{S D, S S}$,

$$
\begin{aligned}
& \pi_{S S, S S}=\frac{1}{2}\left(1-k_{o, S S} r_{\tilde{A}_{o, S S}}^{2}\right), \quad \pi_{S S, D S}=\frac{1}{2}\left(1-k_{o, S S} r_{\tilde{A}_{o, S S}}^{2}\right), \\
& \pi_{S D, D S}=\frac{1}{2}\left(1-k_{o, S D} r_{\overparen{A}_{o, S D}}^{2}\right), \quad \pi_{D S, S D}=\frac{1}{2}\left(1-k_{o, D S} r_{\overparen{A}_{o, D S}}^{2}\right), \\
& \pi_{D D, S D}=\frac{1}{2}\left(1-k_{o, D D} r_{\overparen{A}_{o, D D}}^{2}\right), \pi_{D S, D D}=\frac{1}{2}\left(1-k_{o, D S} r_{\overparen{A}_{o, D S}}^{2}\right), \text { and } \\
& \pi_{D D, D D}=\frac{1}{2}\left(1-k_{o, D D} r_{\hat{A}_{o, D D}}^{2}\right) .
\end{aligned}
$$

The other elements of Π are zero.

Appendix B: Elements in matrix and $\boldsymbol{\Lambda}$ calculated according to [9] and [12].
Note that $\lambda_{\mathrm{o}, \mathrm{p}}=p_{o}^{-1} b_{S, \widehat{A}_{O}} b_{\widehat{A}_{o} S_{p}}$, where $b_{S, \widehat{A}_{\mathrm{O}}}=p_{o} i_{o} \sigma_{\hat{A}_{o}}^{-1}$, and $b_{\widehat{A}_{o} S_{p}}=$ $\operatorname{cov}\left(\widehat{\mathrm{A}}_{0}, S_{p}\right) / \sigma_{s_{p}}^{2}$,
where $\widehat{\mathrm{A}}_{\mathrm{O}}$ is GEBV of the offspring, p_{o} is selected proportion of offspring,
$b_{S, \hat{A}_{O}}$ is the regression of the selection score (selected or not selected, i.e., $\mathrm{S}=1$ or 0) of the offspring on its GEBV, i_{o} is selection intensity of the offspring selected, $\sigma_{\tilde{A}_{o}}^{2}$ is the variance of the GEBV of the offspring, S_{p} is the selective advantage of the parent, and $b_{\widehat{A}_{o} s_{p}}$ is the regression of the GEBV of the offspring on the selective advantage of the parent.

For example,
$b_{S, \hat{A}_{0, S D}}=p_{o, S D} i_{o, S D} \sigma_{\hat{A}_{o, S D}}^{-1}, b_{\hat{A}_{o, S D} S_{p, S S}}=\operatorname{cov}\left(\widehat{\mathrm{A}}_{\mathrm{o}, S \mathrm{D}}, S_{p, S S}\right) / \sigma_{S_{p, S S}}^{2}$,
$\operatorname{cov}\left(\widehat{\mathrm{A}}_{o, S D}, S_{p, S S}\right)=\operatorname{cov}\left(r_{\hat{A}_{o, S D}}^{2} \frac{1}{2}\left(\mathrm{~s}_{p, S S}+\mathrm{s}_{p, D S}\right), S_{p, S S}\right)=\frac{r_{A_{o, S D}^{2}}^{2}}{2} \sigma_{S_{p, S S}}^{2}$,
Therefore
$\lambda_{\mathrm{SD}, \mathrm{SS}}=i_{o, S D} \sigma_{\hat{A}_{o, S D}}^{-1} \frac{r_{\hat{A}_{o, S D}}^{2}}{2}=\frac{1}{2} i_{o, S D} \sigma_{\hat{A}_{o, S D}}^{-1} r_{\hat{A}_{o, S D}}^{2}$.
In the same way as for $\lambda_{S D, S S}$,
$\lambda_{\mathrm{SS}, \mathrm{SS}}=\frac{1}{2} i_{o, S S} \sigma_{\hat{A}_{o, S S}}^{-1} r_{\hat{A}_{o, S S}}^{2}, \lambda_{\mathrm{DS}, \mathrm{SD}}=\frac{1}{2} i_{o, D S} \sigma_{\hat{A}_{o, D S}}^{-1} r_{\hat{A}_{o, D S}}^{2}$,
$\lambda_{\mathrm{DD}, \mathrm{SD}}=\frac{1}{2} i_{o, D D} \sigma_{\hat{A}_{o, D D}}^{-1} r_{\tilde{A}_{o, D D}}^{2}, \lambda_{\mathrm{SS}, \mathrm{DS}}=\frac{1}{2} i_{o, S S} \sigma_{\hat{A}_{o, S S}}^{-1} r_{\tilde{A}_{o, S S}}^{2}$,
$\lambda_{\mathrm{SD}, \mathrm{DS}}=\frac{1}{2} i_{o, S D} \sigma_{\hat{A}_{o, S D}}^{-1} r_{\hat{A}_{o, S D^{\prime}}^{2}}^{2}, \lambda_{\mathrm{DS}, \mathrm{DD}}=\frac{1}{2} i_{o, D S} \sigma_{\hat{A}_{o, D S}}^{-1} r_{\tilde{A}_{o, D S^{\prime}}^{2}}^{2}$, and $\lambda_{\mathrm{DD}, \mathrm{DD}}=\frac{1}{2} i_{o, D D} \sigma_{\hat{A}_{o, D D}}^{-1} r_{\tilde{A}_{o, D D}}^{2}$.

The other elements of $\boldsymbol{\Lambda}$ are zero.

Appendix C: Elements of $\Delta \boldsymbol{V}_{\boldsymbol{S S}, \boldsymbol{S D , D S}, \text { or } \boldsymbol{D D}}$

With a binomial distribution of family size, the deviation from a Poisson variance equals $n p(1-p)-n p=-n p^{2}$, where n is the number of candidates and p is the selected proportion. Therefore,
$\Delta V_{S S, 1,1}=-\left(\mathrm{N}_{D S} / N_{S S}\right) \times f m d s \times p(1) \times p(1)$ and
$\Delta V_{S S, 2,2}=-\left(\frac{\mathrm{N}_{D S}}{N_{S S}}\right) \times f m d s \times p(2) \times p(2)$,
where $\Delta V_{S S, i, j}$ is the (i, j) element in $\Delta V_{S S}$,
$f m d s$ is the number of male offspring produced from a dam of DS , and $p(1)$ and $p(2)$ are the selected proportions of SS and SD , respectively. The other elements of $\Delta \boldsymbol{V}_{\boldsymbol{S}}$ are 0 . Similarly,
$\Delta V_{S D, 3,3}=-\left(\frac{N_{D D}}{N_{S D}}\right) \times f f d d \times p(3) \times p(3)$ and
$\Delta V_{S D, 4,4}=-\left(\frac{\mathrm{N}_{D D}}{N_{S D}}\right) \times f f d d \times p(3) \times p(3)$,
where $p(3)$ and $p(4)$ are the selected proportions of DS and DD, respectively. The other elements of $\Delta \boldsymbol{V}_{\boldsymbol{S D}}$ are 0 . Similarly,
$\Delta V_{D S, 1,1}=-f f d s \times p(1) \times p(1), \Delta V_{D S, 2,2}=-f f d s \times p(2) \times p(2)$,
$\Delta V_{D D, 3,3}=-f f d d \times p(3) \times p(3)$, and $\Delta V_{D D, 4,4}=-f f d d \times p(4) \times p(4)$.
The other elements of $\Delta \boldsymbol{V}_{\boldsymbol{D} \boldsymbol{S}}$ and $\Delta \boldsymbol{V}_{\boldsymbol{D} \boldsymbol{D}}$ are 0 .

