Go to Top Go to Bottom
Animal Breeding and Genetics
Asian-Australasian Journal of Animal Sciences 2009;22(7): 943-954.
https://doi.org/10.5713/ajas.2009.70457    Published online June 25, 2009.
Association between Single Nucleotide Polymorphisms in the Dgat2 Gene and Beef Carcass and Quality Traits in Commercial Feedlot Steers
J. Li, X. Xu, Q. Zhang, X. Wang, G. Deng, X. Fang, X. Gao, H. Ren, S. Xu
Abstract
Diacylglycerol acyltransferase (DGAT) is a key enzyme that catalyzes the final and rate-limiting step of triglyceride synthesis. Both DGAT1 and DGAT2 genes code proteins with DGAT activity. Studies have shown DGAT1 polymorphisms associate with intramuscular fat deposition in beef cattle, but fewer associations between DGAT2 and beef cattle economic traits have been reported. The objective of this study was to investigate single nucleotide polymorphism (SNP) in intron3 of bovine DGAT2 and evaluate the associations of that with carcass, meat quality, and fat yield traits. Test animals were 157 commercial feedlot steers belonging to 3 Chinese native breeds (22 for Luxi, 24 for Jinnan, and 23 for Qinchuan), 3 cross populations (20 for CharolaisFuzhou, 18 for Limousin Luxi, and 17 for SimmentalJinan) and 1 Taurus pure breed population (16 Angus steers). In the current study, 15 SNP were discovered in intron3 and exon4 of DGAT2 at positions 65, 128, 178, 210, 241, 255, 270, 312, 328, 334, 365, 366, 371, 415, and 437 (named as their positions in PCR amplified fragments). Only 7 of them (128, 178, 241, 270, 312, 328, and 371) were analyzed, because SNP in three groups (65-128-255, 178-210-365 and 241-334-366) were in complete linkage disequilibrium within the group, and SNP 415 was a deletion and 437 was a null mutation. Frequencies for rare alleles in the 3 native breed populations were higher than in the 3 cross populations for 178 (p = 0.04), 270 (p = 0.001), 312 (p = 0.03) and 371 (p = 0.002). A general linear model was used to evaluate the associations between either SNP genotypes or allele substitutions and the measured traits. Results showed that SNP 270 had a significant association with the fat yield associated with kidney, pelvic cavity, heart, intestine, and stomach (KPHISY). Animals with genotype CC and CT for 270 had less (CC: -7.713.3 kg and CT: -5.342.5 kg) KPHISY than animals with genotype TT (p = 0.02). Allele C for 270 was associated with an increase of -4.261.52 kg KPHISY (p = 0.006) and -0.920.45% of retail cuts weight percentage (NMP, Retail cuts weight/slaughter body weight) (p = 0.045); allele G for 312 was associated with an increase of -5.452.41 kg KPHISY (p = 0.026). An initial conclusion was that associations do exist between DGAT2 gene and carcass fat traits. Because of the small sample size of this study, it is proposed that further effort is required to validate these findings in larger populations.
Keywords: DGAT2 Gene; SNP; Carcass Fat Traits; Feedlot Cattle


Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : editor@animbiosci.org               

Copyright © 2024 by Asian-Australasian Association of Animal Production Societies.

Developed in M2PI

Close layer
prev next