Go to Top Go to Bottom
Animal Reproduction and Physiology
Asian-Australasian Journal of Animal Sciences 2007;20(6): 850-855.
https://doi.org/10.5713/ajas.2007.850    Published online May 2, 2007.
Cloning and Expression of the Duck Leptin Gene and the Effect of Leptin on Food Intake and Fatty Deposition in Mice
Han Chuan Dai, Liang Qi Long, Xiao Wei Zhang, Wei Min Zhang, Xiao Xiong Wu*
Correspondence:  Xiao Xiong Wu,
Abstract
Leptin is the adipocyte-specific product of the obese gene and plays a major role in food intake and energy metabolism. Leptin research was mainly focused on mammalian species, but understanding of leptin and its function in poultry is very poor. In this study, the duck leptin gene was amplified using the reverse transcription-polymerase chain reaction (RT-PCR) from duck liver RNA. The cDNA fragment was inserted into the pET-28a expression vector, and the resulting plasmid was expressed in Escherichia coli BL21 (DE3). Experimental mice were given an intraperitoneal injection of 10 mg/kg leptin dissolved in phosphate buffered saline (PBS), while the control mice were injected with PBS. The effect of leptin on food intake, body weight and fatty deposition in mice was detected. Sequence analysis revealed that duck leptin had a length of 438 nucleotides which encoded a peptide with 146 amino acid residues. The sequence shares highly homology to other animals. The coding sequence of duck leptin was 84 and 86% identical to human and pig leptin nucleotides sequence. Highest identity was with the rat coding sequence (95%). The identity of the amino acid sequence was 84, 82 and 96% respectively compared to that of the human, pig and rat. Results of SDS-PAGE analysis indicated that a fusion protein was specifically expressed in E. coli BL21 (DE3). The purified product was found to be biologically active during tests. Continuous administration of recombinant duck leptin inhibited food intake. Despite the decrease of food intake, leptin significantly induced body weight and fatty deposition. These changes were accompanied by a significant down-secretion of plasma glucose, cholesterol, triglyceride and insulin levels in mice. The observations provide evidence for an inhibitory effect of leptin in the regulation of food intake and for a potential role of duck leptin in the regulation of lipogenesis.
Keywords: Duck; Leptin; Expression; Food Intake; Fatty Deposition


Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : editor@animbiosci.org               

Copyright © 2024 by Asian-Australasian Association of Animal Production Societies.

Developed in M2PI

Close layer
prev next