Go to Top Go to Bottom
Swine Nutrition and Feed Technology
Asian-Australasian Journal of Animal Sciences 2005;18(7): 1003-1010.
https://doi.org/10.5713/ajas.2005.1003    Published online November 26, 2005.
Comparative Studies on the Relative Efficacy of DL-methionine and Liquid Methionine Hydroxy Analogue in Growing Pigs
B. Zimmermann, R. Mosenthin, M. Rademacher, P. B. Lynch, E. Esteve-Garcia
Abstract
A study consisting of 3 trials was designed to assess the relative biological efficacy of DL-methionine (DL-Met) in comparison to liquid methionine hydroxy analogue (MHA-FA) in growing pigs. In trial I a basal diet was supplemented with three graded levels of DL-methionine (0.25, 0.50 and 0.75 g/kg) or liquid MHA-FA (0.0285, 0.0570 and 0.0855 g/kg) on equimolar basis. The basal diet contained 18.3% CP, 0.22% Met and 0.51% Met+Cys, which is below the methionine requirement for weaned pigs between 10 and 20 kg BW according to NRC (1998) but adequate in all other essential nutrients and energy. Using an exponential model, the efficacy of the two methionine sources was estimated from nitrogen retention data obtained in 42 piglets with an initial BW between 11.0 kg (Exp. 1) and 11.7 kg (Exp. 2). In trials II and III, with a total of 192 and 96 pigs, and with an initial BW of 10.6 and 21 kg, respectively, growth response criteria were assessed to determine if in agreement with previous studies in pigs and poultry a biological effectiveness of about 65% on average could be confirmed for liquid MHA-FA in comparison to DL-met. Based on N-retention (trial I) the biological efficacy of liquid MHA-FA on a weight-to-weight basis was calculated to be 62% relative to DL-met. Basically, these results were confirmed using growth response criteria as measures; the results of trial II and III revealed no significant differences in growth performance and feed conversion between treatments indicating that 100 parts of liquid MHA-FA can be replaced by 65 parts of DL-met.
Keywords: DL-methionine; Liquid Methionine Hydroxy Analogue; Nitrogen Retention; Growth Performance; Bioefficacy; Pig


Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : editor@animbiosci.org               

Copyright © 2024 by Asian-Australasian Association of Animal Production Societies.

Developed in M2PI

Close layer
prev next